GAME PROBLEM OF IMPULSE "HARD" CONTACT IN A POSITION ATTRACTION FIELD WITH AN OPPONENT WHO REALIZES A BOUNDED THRUST

PMM Vol. 39, N2, 1975, pp. 195-206
G.K. POZHARITSKII
(Moscow)
(Received January 3, 1974)

We examine a game problem [1, 2] of the "hard" contact of two points (players) in a linear position field of attraction to a fixed center. We assume that the first (the minimizing) player realizes a control (thrust, force) which is bounded in total momentum, while the second (the maximizing) player has available a controlled thrust which is bounded in absolute value. The game's value is the time up to "hard" contact, i.e. the geometric coincidence of the points for an arbitrary relative velocity. This paper abuts [3] in subject matter and is very closely related to [4]. In those sections which repeat the material of [4] the proofs are given concisely.

1. Let two points (the first and second players) with masses m_{1}, m_{2} be attracted to a fixed center O by forces $F_{1,2}=-\omega^{2} m_{1,2} r_{1,2}$, where $\omega^{2}=$ const >0, while $r_{1,2}$ are the position radius vectors of the points relative to center O. Suppose that the players have available arbitrarily-directed control forces (thrusts) $f_{1,2}$ with the constraint $\left|f_{2}\right| \leqslant v=$ const >0 for the second player. By a selection of scales we can obtain $\omega^{2}=1, v=m_{2}$. Suppose that after this the constraint on $f_{1}=m_{1} u$ - the first player's thrust - takes the form of the momentum constraint

$$
\begin{equation*}
\mu^{(1)}=\mu_{0}-\int_{0}^{\tau}|u| d t \geqslant 0 \tag{1.1}
\end{equation*}
$$

If force f_{1} is finite, then in the variables

$$
x_{1}=r_{1}-r_{2}, \quad y_{1}=r_{1}^{*}-r_{2}^{*}, \quad f_{2}=-m_{2} v
$$

the motion develops according to the equations

$$
\begin{align*}
& x_{1}^{\cdot}=y_{1}, \quad y_{1}^{\cdot}=-x_{1}+u+v \tag{1.2}\\
& \mu^{\cdot}=\mu_{1}^{(1)}=-|u|, \quad \mu \geqslant 0, \quad|v| \leqslant 1
\end{align*}
$$

In the region $x=\left|x_{1}\right|>0$, using the notation

$$
\begin{aligned}
& j_{\alpha}=x_{1} / x, \quad y_{\alpha}=\left(y_{1}^{*} j_{\alpha}\right), \quad y_{\beta, 1}=y_{1}-y_{\alpha} j_{\alpha} \\
& y_{\beta}=\left|y_{\beta, 1}\right|, \quad j_{\beta}=y_{\beta, 1} / y_{\beta}, \quad j_{\gamma} \perp j_{\alpha}, \quad j_{\alpha} \perp j_{\beta}, \quad y_{\beta}>0
\end{aligned}
$$

in the moving system of unit vectors $j_{\alpha}, j_{\beta}, j_{\gamma}$ we obtain, as a consequence of Eqs. (1.2),

$$
\begin{aligned}
& x^{\bullet}=y_{\alpha}, \quad y_{\alpha}^{*}=-x+u_{\alpha}+v_{\alpha}+y_{\beta}^{2} / x \\
& y_{\beta}^{\cdot}=u_{\beta}+v_{\beta}-y_{\alpha} y_{\beta} / x, \quad \mu^{\bullet}=-|u|, \quad \mu \geqslant 0, \quad|v| \leqslant 1
\end{aligned}
$$

For $y_{\beta}=0$ the unit vectors j_{β}, j_{γ} are arbitrary in a plane normal to j_{α}. In this case

$$
y_{\beta}^{\cdot}=\sqrt{\left(u_{\beta}+v_{\beta}\right)^{2}+\left(u_{\gamma}+v_{\gamma}\right)^{2}}
$$

Constraint (1.1) admits of jumps in the position $w\left(x, y_{\alpha}, y_{\beta}, \mu\right)$ to the values

$$
w^{(1)}\left[x, y_{\alpha}^{(1)}=y_{\alpha}+\mu_{1, \alpha}, \quad y_{\beta}^{(1)}=\sqrt{\left(y_{\beta}+\mu_{1, \beta}\right)^{2}+\mu_{1, \gamma}^{2}}, \quad \mu^{(1)}=\mu-\left|\mu_{1}\right| \geqslant 0\right]
$$

where the "impulse" control $u-\mu_{1} \delta$ has been used. The vector $w^{(1)}$ is the result of the impulse.

The definition of the admissible pairs $u(w, v), v(w)$ and of the trajectories

$$
w^{(1)}(w(t=0), \quad\{u(w, v), \quad v(w)\}, \quad t)=w^{(1)}(\cdot, t)
$$

corresponding to them repeats the corresponding definitions in [4].
Let us consider two closed sets

$$
M_{1}[x=0], \quad M_{2}\left[\mu-\pi / 2-\left|y_{1}\right| \equiv \mu-\pi / 2-y=0\right]
$$

in the position space W. Set M_{1} is the set of "hard" contact, while set M_{2} plays an auxiliary role. Denoting by $t_{j}(w(\cdot))=T_{j}[u, v]$ the instants at which the positions first hit onto set M_{j}, we call the pair $u_{j}{ }^{\circ}, v_{j}{ }^{\circ}$ and the time $T_{j}{ }^{\circ}=T_{j}\left[u_{j}{ }^{\circ}, v_{j}{ }^{\circ}\right]$ optimal ones when the estimates

$$
T_{j}\left[u_{j}^{\circ}, v\right] \leqslant T_{j}^{\circ} \leqslant T_{j}\left[u, v_{j}{ }^{\circ}\right]
$$

are satisfied. The control $v_{0, j}$ and the region $W_{0, j} \not \equiv M_{j}$ are called the control and the evasion region if the inclusion $w^{(1)}(\cdot) \in W_{0, j}$ is preserved for all $t \geqslant 0$ by any pair $u, v_{0, j}$ -
2. By analogy with [4] we consider the functions

$$
\begin{aligned}
& q(w, p)=\mu-\sqrt{y_{\beta}^{2}+\left(p-y_{\alpha}\right)^{2}}-\operatorname{arctg} p / x-\pi / 2 \\
& r_{1}(w)=\max _{p} q(w, \quad p \leqslant 0)
\end{aligned}
$$

where $p_{1}(w) \leqslant 0$ is the point where the maximum of $r_{1}(w)$ is realized, $p_{2}(w)$ is the smallest zero of the function $q(w, p)$, existing and nonpositive in the region $C_{1}\left[r_{1}(w) \geqslant 0 \mid\right.$. In the notation

$$
l_{1}(w, p)=\sqrt{x^{2}+p^{2}}, \quad l_{2}(w, p)=\sqrt{y_{\beta}^{2}+\left(p-y_{\alpha}\right)^{2}}
$$

we obtain, in the region $w \not \ddagger M_{1} \cup\left[y_{\beta}=0\right]$, the equalities

$$
\begin{aligned}
& q_{p}^{\prime}=-\left(p-y_{\alpha}\right) / l_{2}(w, p)-x / l_{1}^{2}(w, p) \\
& q_{p}^{\prime \prime}=-y_{\beta}^{2} / l_{2}^{3}(w, p)+2 p x / l_{1}^{4}(w, p)
\end{aligned}
$$

The form of the second derivative and the equality $\lim q_{p}{ }^{\prime}=+1$ as $p \rightarrow-\infty$ show that the function $q(w, p)$ can have the only possible stationary maximum in the region $p \leqslant 0$, which undoubtedly exists in the region $w \in\left[x>0, y_{\beta}>0\right.$, $\left.q_{p}{ }^{\prime}(w, 0) \leqslant 0\right]$. The derivative $q_{p}{ }^{\prime}$ may have discontinuities when $y_{\beta}=0$. Omitting the elementary details, we cite the result

$$
p_{1}(w)=-\sqrt{x-x^{2}}, \quad w \in\left[y_{\beta}=0, \quad 0<x \leqslant 1, \sqrt{x-x^{2}}+y_{\alpha} \geqslant 0\right]
$$

$$
\begin{aligned}
& p_{1}(w)=y_{\alpha}, \quad w \in\left[y_{\beta}=0\right] \cap\left\{\left[x>1, \quad y_{\alpha} \leqslant 0\right] \cap[0<x \leqslant 1\right. \\
& \left.\left.\sqrt{x-x^{2}}+y_{\alpha}<0\right]\right\}
\end{aligned}
$$

All the regions mentioned satisfy the condition $q_{p}{ }^{\prime}(w, p \rightarrow+0) \leqslant 0$. We denote their union by D_{1}. In the remaining part $D_{2}=W \backslash\left(M_{1} \cup D_{1}\right)$ of the space the function $q(w, p)$ grows monotonically for $p<0$ and $p_{1}(w)=0$.

Acting by the scheme in [4], we can prove the validity of the following statements. 2.1. The functions $r_{1}\left(w \notin M_{1}\right), \quad p_{1}\left(w \notin M_{1}\right), \quad p_{2}\left(w \in C_{1}\left[r_{1} \geqslant 0\right]\right)$ are continuous,
2.2. If τ is the first instant of realization of the equality $\lim x(t \rightarrow \tau+0)=0$, then $\lim r_{1}(w(\cdot, t \rightarrow \tau)) \geqslant 0$.
2.3. Any impulse control from the family

$$
\begin{aligned}
& u(w, p, m)=m \delta\left[\left(p-y_{\alpha}\right) j_{\alpha}-y_{\beta} j_{\beta}\right] / l_{2}(w, p) \\
& 0 \leqslant m \leqslant \min \left(1, \mu / l_{2}(w, p)\right)
\end{aligned}
$$

preserves the value of $q(w, p)$, i.e.

$$
\Delta q=q\left(w^{(1)}, \quad p\right)-q(w, \quad p)=0
$$

while any impulse control not occurring in this family realizes the bound $\Delta q<0$.
2.4. In the region $w \in C_{1}$ the family of impulse controls

$$
m u_{1}^{\circ}(w)=m \delta\left[\left(p_{2}-y_{\alpha}\right) j_{\alpha}-y_{\beta} j_{\beta}\right] / l_{2}\left(w, \quad p_{2}\right), \quad 0 \leqslant m \leqslant 1
$$

realizes the equality $\Delta p_{2}=p_{2}\left(w^{(1)}\right)-p_{2}(w)=0$, while any control $u=\mu_{1} \delta$ not occurring in this family either strictly increases the root $p_{2}\left(\Delta p_{2}>0\right)$ or translates the position into the region $w^{(1)} \in C_{2} \equiv W \backslash\left(C_{1} \cup M_{1}\right)$.

The derivative $T_{1}{ }^{\bullet}$ of the function (for finite u)
has the form

$$
T_{1}(w)=\operatorname{arctg} p_{2} / x+\pi / 2
$$

$$
\begin{aligned}
& T_{1}^{*}=\left(q_{p}{ }^{\prime}\left(w, p_{2}\right) l_{1}^{2}\right)^{-1}\left[R_{1}+R_{2}+R_{3}\right], \quad w \in C_{1} \cap\left[l_{2}>0\right] \\
& R_{1}=a_{1} l_{1}^{2} / l_{2}-p_{2} l_{2} \\
& R_{2}=x l_{2}{ }^{-1}\left(|u| l_{2}-a_{1} u_{\alpha}+y_{\beta} u_{\beta}\right), \quad R_{3}=x l_{2}{ }^{-1}\left[-a_{1} v_{\alpha}+y_{\beta} v_{\beta}\right] \\
& T_{1} \cdot=-|u|+s\left(u_{\alpha}+v_{\alpha}\right)+\left\{\left(1-s^{2}\right)\left[\left(u_{3}+v_{\beta}\right)^{2}+\left(u_{\gamma}+v_{\gamma}\right)^{2}\right]\right\}^{1 / 2} \\
& w \in C_{1} \cap\left[l_{2}=0\right], \quad s=x /\left(x^{2}+y_{\alpha}^{2}\right) \\
& l_{1}=\sqrt{x^{2}+p_{2}^{2}}, \quad l_{2}=l_{2}\left(w, p_{2}\right), \quad a_{1}=p_{2}-y_{\alpha}
\end{aligned}
$$

These formulas show [4] that the pair

$$
\begin{aligned}
& u_{1}^{\circ}, \quad v_{1}^{\circ}=-u_{1}^{\circ} /\left|u_{1}^{\circ}\right|, \quad w \in C_{1} \cap\left[l_{2}>0\right] \\
& u_{1}^{\circ}=-v, \quad v_{1}^{\circ}=s j_{\alpha}+\sqrt{1-s^{2} j_{\beta}}, \quad w \in C_{1} \cap\left[l_{2}=0\right]
\end{aligned}
$$

realizes the estimates

$$
\begin{equation*}
T_{1}^{\circ}\left(w, u_{1}^{\circ}, v\right) \leqslant T_{1}^{\cdot}\left(w, u_{1}^{\circ}, v_{1}^{0}\right) \leqslant T_{1}{ }^{\circ}\left(w, u, v_{1}^{0}\right) \tag{2.1}
\end{equation*}
$$

The first estimate is verified elementarily. Let us demonstrate the validity of the second
one. In fact, according to statement 2,4,any impulse control $u=\mu_{1} \delta$, preserving the inclusion $w^{(1)} \in C_{1}$ and not equal to $m u_{1}{ }^{\circ}$, strictly increases p_{2} and, consequently, T_{1}. It is not difficulat to verify that the control $m u_{1}{ }^{\circ}$ preserves the first summand $a_{1} l_{1}^{2} / l_{2}$ of sum R_{1} and converts the second summand to the quantity - $p_{2}(w)(1-m) \times$
 it can be shown that for any $u \neq u_{1}{ }^{\circ}$ the estimate $-p_{2} l_{2}>0$ is realized at the next instant.

To discuss what is possible to the first player on the boundary $r_{1}=0$ of region C_{1} we consider the derivative $r_{1}{ }^{\circ}$ of the function $r_{1}(w)$

$$
\begin{aligned}
& r_{1}=1+p_{1} l_{2}\left(w, p_{1}\right)+P_{2}+P_{3}, \quad w \in D_{1} \cap\left[l_{2}\left(w, p_{1}\right)>0\right] \\
& P_{2}=-|u|+\left[\left(p_{1}-y_{\alpha}\right) u_{\alpha}-y_{\alpha} u_{3}\right] / l_{2}\left(w, p_{1}\right) \\
& P_{3}=+\left[\left(p_{1}-y_{\alpha}\right) v_{\alpha}-y_{\beta} v_{\beta}\right] / l_{2}\left(w, p_{1}\right) \\
& r_{1}=1-|u|-s\left(u_{\alpha}+v_{\alpha}\right)-\left\{\left(1-s^{2}\right)\left[\left(u_{\beta}+v_{\beta}\right)^{2}+\left(u_{\gamma}+v_{\gamma}\right)^{2}\right]\right\}^{1 / 2} \\
& w \in D_{1} \cap\left[l_{2}\left(w, p_{1}\right)=0\right]
\end{aligned}
$$

If the second player's control in the region $D_{1} \cap C_{2}$ is specified by the formulas

$$
\begin{aligned}
& v_{1}=-\left[\left(p_{1}-y_{\alpha}\right) j_{\alpha}-y_{\beta} v_{\beta}\right] / l_{2}\left(w, p_{1}\right) \\
& w \in D_{1} \cap\left[l_{2}\left(w, p_{1}\right)>0\right] \\
& v_{1}=s j_{\alpha}+\sqrt{1-s^{2} j_{\beta}}, \quad w \in D_{1} \cap\left[l_{2}\left(w, p_{1}\right)=0\right]
\end{aligned}
$$

and in the region $D_{2} \cap C_{2}$ it is continued uninterruptedly so that it passes continuously into the control v_{1}, v_{1} on the common boundary of the regions ($D_{1} \cap \mathcal{C}_{2}$) and $\left(D_{2} \cap C_{2}\right)$, as well as on the boundary of the regions ($D_{2} \cap C_{2}$) and ($D_{2} \cap C_{1}$), then the control $v^{1}=v_{1}{ }^{(0)}, w \in C_{1}, v^{1}=v_{1}, w \in C_{2}$ is continuous for $w \in M_{1}$.

In addition, from the form of the derivative r_{1}^{*} and from statement 2.3 it follows that any errors of the first player on a part of the boundary $D_{1} \cap \mid r_{1}=0 J$ translate the position into region C_{2}^{\prime}. His errors on a part of the boundary $D_{2} \cap\left[r_{1}=0\right]$ lead to the same result. In fact, according to 2.3 any impulse control not parallel to the optimal one lessens $q(w, 0)=r_{1}(w)$. Any finite control u which converts the derivative $T_{1}{ }^{\circ}$ into a positive quantity also translates the position into region C_{2}.
2.5. In the region $w \in C_{2}$ the control ν^{1} in pair with any control u effects a contact no earlier than the instant $t=\pi / 2$.

Proof. Let $x(\cdot, \tau)=0$; then we can find $t_{1}<\tau$ such that $x\left(\cdot, t \in\left[t_{1}\right.\right.$, $\tau))<1$. From the equality $q_{p^{\prime}}(w, 0)=\left(y_{x} / y\right)-(1 / x)$ follow the estimate $q_{p^{\prime}}(w(\cdot$, $\left.\left.t \in\left[t_{1}, \tau\right)\right), 0\right)<0$ and the inclusion $w\left(\cdot, t \in\left[t_{1}, \tau\right)\right) \in D_{1}$. By the construction of control v^{1} the function $r_{1}(w)$ does not grow for $w \in D_{1} \cap C_{2}$. This means that $w(\cdot$, $\left.t \in\left[t_{1}, \tau\right)\right) \in D_{1} \cap C_{1}$. In fact, from the contrary premise $w\left(\cdot, t_{2} \in\left[t_{1}, \tau\right)\right) \in D_{1} \cap C_{2}$ and from the nonincrease of r_{1} follows the estimate $r_{1}\left(w\left(\cdot, t \in\left[t_{2}, \tau\right)\right)\right) \leqslant r_{1}(w(\cdot$, t_{2})) < 0. This contradicts statement 2.2. From the inclusion $w\left(\cdot, t_{1}\right) \in=D_{1} \cap C_{1}$ follows the existence of t_{3}, namely, the first root of the equation $r_{1}\left(w\left(\cdot, t_{3}\right)\right)=0$, and the function r_{1} does not decrease along the trajectory when $t=t_{3}$. It is obvious that this is possible only for

$$
p_{2}\left(w\left(\cdot, t_{3}\right)\right)=0, \quad p_{1}\left(w\left(\cdot, t_{3}\right)\right) \geqslant 0
$$

i.e. $w\left(\cdot, t_{3}\right) \in\left[T_{1}(w)=\pi / 2\right]=M_{2}$, Q.E.D.

The arguments presented above allow us to formulate a result.
Theorem 1. When $w(0) \in C_{1}\left[r_{1} \geqslant 0\right]$ the controls $u_{1}{ }^{0}, v_{1}{ }^{\circ}$ realize the optimal time $T_{1}{ }^{\circ}(w)=\operatorname{arctg} p_{2} / x+\pi / 2$.

Proof. Statement 2.1 establishes the continuity of function $T_{1}{ }^{\circ}(w)$. Statement 2.4 shows that the first player cannot lessen the function $T_{1}{ }^{\circ}(w)$ by an impulse. Estimate (2.1) establishes a saddle point for the derivative when $w \in C_{1}$, while statement 2.5 together with the estimate $T_{1}{ }^{\circ}(w) \leqslant \pi / 2$ shows that the first player cannot lessen the time to contact by leaving region C_{1}.

Note. The control $v_{2,0}=v^{1}$ realizes an escape from set M_{1} in the region $C_{2} \cap[\mu-\pi / 2<0]$. In fact, the difference $\mu-\pi / 2$ does not increase; therefore, the equation $q(w(\cdot, t), p)=0$ cannot have at zero the value $p=0$ along any admissible trajectory corresponding to the pair u, v^{1}.
3. In region C_{2} the problem of constructing the minimax time becomes the problem of constructing the minimax time for the position to hit onto the set $M_{2}[q$ (w, $0)=\mu-\pi / 2-y=0]$ in the presence of the phase constraint $w(\cdot, t) \in C_{2}$ (a constraint on the second player's actions). Let us reject the phase constraint for the present. Intuitively we feel also that the minimax is achieved for $u=0$. Therefore, in the set $C_{3}[\mu-\pi / 2-y<0]$ we seek the "slow-action" of T_{2} on set M_{2} and the control v_{2} corresponding to it.

Within the framework of the "auxiliary" problem we form in the fixed system (x_{1}, y_{1}) two three-dimensional vectors $g_{x}=\partial T_{2} / \partial x_{1}$ and $g_{u}=\partial T_{2} / \partial y_{1}$ and, after the operation $\max _{v}$, obtain the "fundamental equation" [1]

$$
\left(g_{x} y_{1}\right)-\left(g_{y} x_{1}\right)+\left|g_{y}\right|+1=0
$$

with the "termination conditions" [1]

$$
\begin{aligned}
& g_{x}^{(3)}=0, \quad g_{y}^{(3)}=\lambda y_{1} / y, \quad \lambda>0 \quad w \in M_{3}=M_{2} \cap[y>0 \\
& \left.-y+x y_{x}>0\right]
\end{aligned}
$$

The termination conditions show that the equalities

$$
\begin{aligned}
& v_{2}=y_{1} / y, \quad T_{2} \leqslant \pi / 2, \\
& v_{2}=-y_{1} / y, \quad \pi>T_{2}>\pi / 2, \quad y_{1} / y \in M_{3}
\end{aligned}
$$

are valid along the "characteristics" $g_{x}^{*}=g_{y}, g_{y}^{*}=-g_{x}$, i. e. control v_{2} preserves along the characteristics a constant value of y_{1} / y equal to its value on set M_{3} for $T_{2} \leqslant \pi / 2$, and changes this value to a contrary one for $T_{2} \geqslant \pi / 2$. It is clear that the optimal trajectories of the auxiliary problem remain in the plane containing the vectors x_{1}, y_{1}.

We choose a fixed system of axes coinciding with the moving trihedron $j_{\alpha}, j_{\beta}, j_{\gamma}$, typical for some position $w \in C_{3}$, and we denote the components along these fixed axes by subscripts $x_{1, i}, y_{1, i}, v_{2, i}(i=1,2,3)$. The discussions preceding show that $v_{2,3}=0$. To determine $T_{2} \leqslant \pi / 2, \nu_{2}$ we use the functions

$$
\begin{align*}
& y_{1,1}=-\left(x-v_{2,1}\right) a+y_{a} b, \quad y_{1,2}=v_{2,2} a+y_{\beta} b \tag{3.1}\\
& a=\sin t, \quad b=\cos t
\end{align*}
$$

The condition $v_{2}=y_{1}\left(T_{2}\right) /\left|y\left(T_{2}\right)\right|$ allows us to seek $T_{2}<\pi / 2$ as the smallest positive root of the equation

$$
\begin{aligned}
& \xi(w, t)=\mu-\pi / 2-a-A(w, t)=0 \\
& A(w, t)=\left[\left(-x a+y_{\beta} b\right)^{2}+y_{\beta} b^{2}\right]^{1}
\end{aligned}
$$

To determine $T_{2}>\pi / 2$ the same reasonings allow us to obtain the equation

$$
\eta(w, t)=\mu-\pi / 2-2+a-A(w, t)=0
$$

4. Let us establish a number of important properties of the function

$$
\zeta(w, t)=\left\{\begin{array}{l}
\xi(w, t \boxminus[0, \pi / 2]) \\
\eta(w, t \in(\pi / 2, \pi))=\xi(w, t-\pi)-2
\end{array}\right.
$$

4.1. The function $\xi(w, t \in[-\pi, \pi])$ has no more than two isolated maxima with respect to variable t.

Proof. For $\left.w \in[1 x=0] \cup\left[y_{\alpha}=0\right] \cup\left[y_{\beta}=0\right]\right]$ statement 4.1 can be verified by calculation. At the remaining positions the function $A(w, t \in[-\pi, \pi])$ does not have zeros and the points $t_{1,2}=\mp \pi / 2$ are not stationary points for the function $\xi(w, t)$. We introduce the notation

$$
\begin{aligned}
& \partial \xi / \partial t=\xi^{\prime}(w, t \neq 1 \pi / 2)=-b-b^{2} m_{1} \Lambda^{-1} \\
& m_{1}=m_{1}(w, t)=m_{2}(w, z=\operatorname{tg} t)=\left(-x z+y_{\alpha}\right)\left(-x-y_{\alpha} z\right)+y_{\beta}{ }^{2} z \\
& n_{1}(w, t)=n_{2}(w, z)=\left(-x z+y_{\alpha}\right)^{2}+y_{\beta}{ }^{2}-m_{2}{ }^{2}(w, z)
\end{aligned}
$$

A stationary point of function ξ is a zero of the function n_{1}. On the other hand, a zero $t_{j} \in[-\pi / 2, \pi / 2]$ of function n_{1} is a zero of the function ξ^{\prime} for $m_{1}<0$, or (for ($m_{1}>$ 0) either the point $t_{j}+\pi<\pi$ or the point $t_{j}-\pi>-\pi$ is a zero of function ξ^{\prime} From the periodicity conditions and from the equalities $\xi(w,-\pi)=\xi(w, 0)=\xi(w, \pi)$ it follows that the function ξ^{\prime} has an even number of zeros, i.e. $k \geqslant 2$, while the function n_{2} - a polynomial in z of degree no higher than the fourth - has no more than four zeros on the interval $t \in(-\pi / 2, \pi / 2)$. This means that $k=2,4$.
4.2. The function $\xi(w, t)$ admits of no more than one maximum on the interval $[0, \pi)$.

The case when $\xi(w, t)$ has a maximum at $t=0$, is investigated simply. It is not difficult also to show that the maxima and minima are isolated at the remaining positions. An accumulation of all the isolated points on the interval $[0, \pi]$ is impossible because of the equality $\xi(w,-\pi)=\xi(w, 0)$. It reamins to consider the possibility that two maxima $t_{2}{ }^{\circ}, t_{4}^{\circ}$, separated by a minimum $t_{3,0}$, lie on the interval $[0, \pi]$, while the minimum $t_{1}, 0 \in(-\pi, 0)$. Since there are no other isolated points, the function $\xi(w, t)$ increases for $t \in\left[0, t_{2}{ }^{\circ}\right]$. A contradiction follows from the estimate

$$
\xi\left(w, t_{2}{ }^{\circ}\right)>\xi(w, 0)>\xi\left(w, t_{2}{ }^{\circ}-\pi\right)=\xi\left(w, t_{2}{ }^{\circ}\right)+2 a\left(t_{2}{ }^{\circ}\right)
$$

The function $\zeta(w, t)$ is defined for $t \in[0, \pi]$. We say that $\zeta(w, t)$ has a "maximum at $t=0$ " if the function $\xi(w, t \in[-\pi, \pi])$ has such a maximum at $t=0$. We note that the function ξ has unisolated maxima at the sole position $w[x=$ 1, $y=0]$. They are isolated at the remaining positions. In accordance to what has been presented, the function $\zeta(w, t \in[0, \pi])$ admits of no more than two maximum points $\tau_{1}<\tau_{2} \in[0, \pi)$ with the values ζ_{1} and ζ_{2} of the function ζ. By C_{M} we denote the region where even one of the maxima exists, and we set $\zeta_{3}=\zeta_{1}$ when it is
unique and $\zeta_{3}=\max \left[\zeta_{1}, \zeta_{2}\right]$ when there are two maxima.
4.3. The equality $\zeta_{1}=\zeta_{3}$ and the bound $\zeta_{1}>\zeta_{2}$ if a second maximum exists, are valid in the region $C_{M} \cap\left[\zeta_{3} \geqslant \zeta(w, 0) \equiv \zeta_{0}\right]$.
Proof. Let $\zeta_{3}=\zeta\left(w, \tau_{3} \in[0, \pi / 2]\right)$, then τ_{3} is a maximum point of function ξ. Statement 4. 3 is verified simply when $w \in\{x=1, y=0]$. At the remaining positions τ_{3} is an isolated point. In addition, according to 4.2 , the estimate
$\zeta_{3}>\xi\left(w, t \in[0, \pi), t \neq \tau_{3}\right)>\zeta(w, t \in(\pi / 2, \pi))=\xi(w, t \in(\pi / 2, \pi))-2+2 a$
is valid, Let $\tau_{3} \in(\pi / 2, \pi)$. From the estimate

$$
\xi(w, t \in(\boldsymbol{\pi} / 2, \pi))>\zeta(w, t)=\xi(w, t)-2+2 a
$$

it follows that function ξ has a maximum for $t \in(\pi / 2, \pi)$ and, therefore, function ζ has only one maximum $\zeta_{1}=\zeta_{3}$.
5. Let us consider the region $C_{4}\left[\xi_{0}-\mu-\pi / 2-y \leqslant 0\right]$, namely, the closure of region C_{3}. For $w \in A_{1}\left[C_{4} \cap\left[\zeta_{1} \geqslant 0\right]\right]$ there exists a first nonnegative zero t_{ζ} of function ζ. In the region $A_{1}^{\prime}\left[A_{1} \cap\left[A_{\zeta} \equiv A\left(w, t_{\zeta}\right)>0\right]\right]$ the necessary conditions in section 5 lead to the control

$$
\begin{align*}
& v_{2}=A_{\zeta} h_{\zeta}\left[\left(-x a_{\zeta}+y_{\alpha} b_{\zeta}\right) j_{\alpha}+y_{\beta} b_{\zeta} j_{\beta}\right] \tag{5,1}\\
& a_{\zeta}=\sin t_{\zeta}, \quad b_{\zeta}=\cos t_{\zeta}, \quad h_{\zeta}=\left\{\begin{array}{r}
1, \\
-1, \\
-1, \\
t_{\zeta} \in[0, \pi / 2]
\end{array}\right.
\end{align*}
$$

A simple investigation shows that t_{ζ} can be the first zero of function ζ and that the function $A(w, t)$ vanishes only when $\zeta\left(w, t_{\zeta}\right)=\zeta_{1}$. Furthermore, the estimate $s(w)=$ $x /\left(x^{2}+y_{x}^{2}\right) \leqslant 1$ is valid at these positions, However, in the region $A_{1}^{\prime \prime} \mid A_{1} \cap\left[\zeta_{1}-\right.$ $\left.A_{\zeta}=0\right]$ the necessary conditions do not yield a univalent control v_{2} but yield only inequalities. Any control $|v|=1$, satisfying these inequalities, is acceptable by the necessary conditions. For example, we can set

$$
\begin{equation*}
v_{2}=h_{\vartheta} j_{l_{\alpha}}+\sqrt{1-s^{2}} j_{\beta} \tag{5.2}
\end{equation*}
$$

In the region $A_{2} I C_{4} \cap \cdot \mid \zeta_{0}<0, \quad \zeta_{1} \geqslant \zeta_{0} I I$ we continue the control by formulas (5.1), (5.2), by setting $t_{\zeta}=\tau_{1}$. As we shall see from what follows, there are sufficient grounds for such a choice. In the region $A_{3}\left[C_{4} \backslash\left(A_{1} \cap A_{2}\right)\right]$ we seek to increase y and, therefore, we set

$$
\begin{align*}
& v_{2}=\left(y_{x} j_{\alpha}+y_{\beta} j_{\beta}\right) / y, \quad w \in A_{3} \cap[y>0] \tag{5.3}\\
& v_{2}=x_{1} / x, \quad w \in A_{3} \cap[y=0, \quad x>0] \\
& v_{2}=\overline{\text { const }}, \quad\left|v_{2}\right|=1, \quad w \in A_{3} \cap[y=x=0]
\end{align*}
$$

We introduce into consideration the trajectories w_{2} generated by the pair $u_{2}=0$, v_{2} and denote by $\zeta_{0(2)}^{*}$ the derivative of the function $\zeta_{0}=\zeta(w, 0)$ along trajectories w_{2}. We introduce also the set

$$
\left.M_{4}\left[\zeta_{0}=0 \cap\left[I \zeta^{\prime}(w, 0)=-1+x y_{x} / y \leqslant 0, \quad y>0\right] \cup[y=0]\right]\right]
$$

which is the "reverse side" of set M_{2}, i.e. that part of it which the second player can always evade for $u=u_{2}=0$. We note that a trajectory w_{2} can realize a "slow-action" onto M_{2} from region C_{3} if it does not intersect set M_{4} until the set $M_{2} \backslash M_{4} \equiv M_{3}$.
has been hit. Unfortunately, not all trajectories w_{2} possess this property and among them there exist those which from the region C_{3} fall inside the region $C_{5}\left[\zeta_{0}<0\right]$ through the boundary of M_{4}, and again go into region C_{3} arriving at M_{3} by the instant $t==$ $\left.t_{\zeta}(u)(0)\right)$. From the subsequent analysis it becomes clear in what sense we can proceed to talk about the trajectories w_{2} in region C_{5} wherein v_{2} is not defined.

Lemma. Trajectories w_{2} can intersect set M_{4} from the side of region C_{3} only on the set

$$
M_{5}\left[M_{4} \cap\left[1<y<2, \quad y_{\alpha}<0, \quad \zeta_{1}>0, \quad t_{\zeta}>\pi / 2\right]\right]
$$

Proof. Let $\left.w \in M_{\dot{j}}\left[M_{4} \cap 1 \zeta_{1} \geqslant 0,0<t_{\zeta} \leqslant \pi / 2\right]\right]$. From the equation $\zeta(w, 0)=$ $\zeta\left(w, t_{\zeta}\right)$ we find that t_{ζ} is the first zero of the function $\lambda_{1}(w, t)=y-a-A$. From the equation $(y-a)^{2}-A^{2}=0$ it follows that t_{ζ} is a zero of the function

$$
\lambda_{2}(u, t)=\left(y^{2}-x^{2}+1\right) a+2 x y_{\alpha} b-2 y
$$

It is not difficult to show that t_{ν} is its first zero. From the estimate $0<t_{\zeta} \leqslant \pi / 2$ follows the estimate $-1+x y_{\alpha} / y=\lambda_{1}{ }^{\prime}(w, 0)<0$. This means that t_{ζ} satisfies the estimate

$$
\lambda_{2^{\prime}}\left(w, t_{\zeta}\right)=\left(y^{2}-x^{2}+1\right) a_{\zeta}-2 x y_{\alpha} b_{\zeta} \geqslant 0
$$

We now note that by the construction of control v_{2} not one of the trajectories w_{2} can make the function A_{ζ} vanish more than once, and for $A_{\zeta}=0 \rightarrow w_{2} \in C_{3}$. We can easily convince ourselves by looking over the possibilities. From the estimate $\dot{A}_{\zeta}>0$ and the equation $A_{\zeta}=y-a_{\zeta}$ follows the equality

$$
\zeta_{0: 2)}=\left(x y_{\zeta}-b_{\zeta}\right) / y\left(y-a_{\zeta}\right)
$$

It is not difficult to verify that the estimate $\zeta_{0(2)}^{0} \geqslant 0$ is consistent with the estimate $\lambda_{2}{ }^{\prime}\left(w, t_{\zeta}\right) \geqslant 0$ and with the equality $\lambda_{1}=0$ only on the set

$$
M_{7}\left[M_{6} \cap\left[a_{\zeta}=\left(y^{2}-x^{2}+1\right) / y, \quad b_{\zeta}=x y_{\alpha} / y\right]\right]
$$

For $w \in M_{7}$ the trajectory w_{2} lies wholly in M_{i}, while x "arrives" at M_{i} from the region $C_{5}\left[\zeta_{0}<0\right]$. We shall talk about the trajectories w_{2} in region C_{5} in the sense of a continuation into the "past" by a time $\tau=-\pi$ of the trajectories of set M_{3} with a switching of control v_{2} to the opposite one at $\tau=-\pi / 2$.

On the set $M_{*}\left|M_{4} \cap\left[\zeta_{1} \geqslant 0, t_{\zeta}>\pi / 2\right]\right|$ we have the equalities and estimates

$$
\begin{aligned}
& \lambda_{1} \equiv y-2+a_{\zeta}-A_{\zeta}=0 \\
& \lambda_{1}=\left(a_{\zeta} A_{\zeta}\right)^{-1}\left(4(y-1) b_{\zeta}-x y_{\alpha} a_{\zeta}-a_{\zeta} b_{\zeta}(y-2)\right) \\
& \dot{\zeta_{0(2)}==\left(b_{\zeta} y^{2}+x y_{\alpha}(y-2)\right)\left(y^{2}\left(y-2+a_{\zeta}\right)\right)^{-1}} \\
& T_{\zeta}>\pi / 2 \Rightarrow \zeta(w, \pi / 2)<0 \leftrightarrow x>y-1
\end{aligned}
$$

Assuming to the contrary that $\breve{\zeta}_{0(2)} \geqslant 0$, we obtain the estimate

$$
\lambda_{1}<\lambda_{3} \equiv y-2+a_{\zeta}-\left[(y-1)^{2} a_{\zeta}^{2}+y^{2} b_{\zeta}^{2}+2 a_{\zeta} b_{\zeta}^{2} y / y-2\right]^{1 / 2}
$$

In the region $M_{8} \cap[y \geqslant 2]$ we can easily verify the estimate $\lambda_{3}<0$. The contradiction with the equation $\lambda_{1}=0$ leads to the estimate

$$
\zeta_{0(2)}^{\circ}\left(w \in M_{n} \cap[y \geqslant 2]\right)<0
$$

In the region $M_{8} \cap\left[\zeta_{1}=0\right]$ the equality $\lambda_{1}{ }^{\prime}=0$ implies, as a consequence, the relation

$$
\zeta_{0(2)}\left(w \in M_{s} \cap\left[\zeta_{\zeta}=0\right]\right)=4(y-1) b_{\zeta} A_{\zeta} / a_{\zeta}<0
$$

In the region $M_{8} \cap[y \leqslant 1]$ the function λ_{1} has no zeros.
At the remaining positions of the set $M_{4} \backslash M_{5}$ it is clear by the construction of v_{2} that $\zeta_{0(2)}^{\circ}<0$. An exception is the set $\left.M_{4}\right\rceil\lceil x=1, y=0\rfloor$, i.e. the "fixed points" which the trajectories w_{2} cannot hit from the side of region c_{3}. We note that in the proof we used the equation $\zeta_{0}=\zeta\left(w, t_{6}\right)$ and did not use the equation $\zeta_{0}=0$. This means that the trajectory $w_{2} \in A_{2}$ can once again pass into A_{3} from the boundary $\left[\zeta_{0}=\zeta_{1}<0, t_{\zeta}>u\right]$ of regions A_{2} and A_{3} only for $t_{\zeta}=0$. Sliding states are impossible on this boundary whereon v_{2} is discontinuous.

Let us fix y on set M_{4} and increase x from the value $x_{1}=y-1$. The function $\zeta_{0(2)}$ will change from the value $\left(\zeta_{0(2)}^{*}\right)_{1}=x_{1} y_{\alpha}(2-y)>0$. With the change in x the function ζ_{1} (the maximum) necessarily changes sign at $x=x_{2}$. According to the lemma the estimate $\zeta_{0(2)}<0$ is valid for $x=x_{2}$. This means that the equation $\zeta_{0(2)}^{*}\left(x_{3}, y_{x}, y\right)=0$. is valid for some $x_{3}=x_{3}\left(y_{x}, y\right)$.

For $x=x_{3}$ it is not difficult to determine the equality and the estimate

$$
\begin{aligned}
& \partial \zeta_{0(2)} / \partial x=\zeta^{\prime}\left(w, \quad t_{\zeta}\right)^{-1} c(w) \\
& c(w)=4(y-1) A_{\zeta}-y^{2} a_{\zeta}^{3}\left(y^{2} a_{\zeta} /(2-y)+y_{\alpha}\right)<0
\end{aligned}
$$

which establish the uniqueness and continuity of the curve $x=x_{3}\left(y_{\alpha}, y\right)$ separating the regions $N_{1}\left[M_{4} \cap\left[\zeta_{0(2)}^{\circ}<0\right]\right]$ and $N_{2}\left[M_{4} \cap\left[\zeta_{0(2)}^{*}>0\right]\right]$ for any value 1-y<2. In region N_{2} we form a new control v_{2} and instead of a realization by formula (5.1) we set

$$
\begin{align*}
& v_{2}\left(w \in N_{1}\right)=v_{2, \alpha} j_{\alpha}+\sqrt{1-v_{2, \alpha}^{2}} j_{\beta} \tag{5.4}\\
& v_{2, \alpha}=x y_{\alpha} / y^{2} \mid-\left(x^{2} y_{\alpha}^{2} / y^{4}-y_{\alpha}^{2}\left(1+x^{2}\right) / y^{2}+1\right)^{1 / 2}
\end{align*}
$$

This control maximizes the derivative $t_{\zeta}{ }^{*}\left(w, u_{2}, v\right)$ on the set of controls v preserving ($\zeta_{0}\left(w, u_{2}, v\right)=0$) the value ζ_{0}. In the region C_{2} also we form the control $v_{3}(w)$ by the formulas

$$
\begin{equation*}
v_{3}(w)=v_{2}(w), \quad w \in C_{2} \cap\left[r_{1}(w) \leqslant \zeta_{1}\right] \equiv F_{1} \tag{5.5}
\end{equation*}
$$

At those positions where $r_{1}(w)>\zeta_{1}$, or where ζ_{1} does not exist, we set

$$
\begin{equation*}
v_{3}(w)=v_{1}(w), \quad w \in C_{2}, F_{1} \equiv F_{2} \tag{5.6}
\end{equation*}
$$

6. The control v_{2} realizes the time $T_{2}(w)=t_{\zeta}(w)$ for all trajectories w_{2} arriving at M_{3} from region C_{3} and by-passing set N_{1}. Trajectories w_{2}, hitting onto N_{1}, arrive at M_{3} by the instant $T_{2}(w)=t_{1}(w)+t_{2}(w)+\pi / 2$. Here $t_{1}(w)$ is the time of motion up to set $N_{1}, t_{2}(w)$ is the time of sliding on set N_{1} from which the trajectory leaves for $y-1-x=0, y_{\alpha} \leqslant 0, i_{.}$e, at the instant the equality $t_{\zeta}(w)=\pi / 2$. is realized. We can show that the trajectory does not intersect the curve $x=x_{3}$.

The region occupied by trajectories of the first type is denoted by $W_{2}{ }^{\circ}$ (max) ; trajectories of the second type occupy the region $W_{2}{ }^{\circ}$ (sup). The rest of the trajectories w_{2} starting in C_{3} occupy the region $W_{0,2}$.

Theorem 6.1. The equality $T_{2}{ }^{\circ}\left[u_{2}{ }^{\circ}=0, \quad v_{2}{ }^{\circ}=v_{2}\right]=T_{2}{ }^{\circ}=T_{2}(w)$ realizes in region W_{2}^{c} (max). In region W_{2}° (sup) there exists a sequence of controls $v_{2, j}$ such that

$$
T_{2}\left[u, v_{2, j}\right] \leqslant T_{2}\left[u_{2}^{\circ}=0, v_{2, j}\right] \rightarrow T_{2}(w) \quad \text { as } \quad v_{2, j} \rightarrow v_{2}
$$

In the region $W_{0,2}$ the control $v_{2}=v_{0,2}$ causes the trajectory to evade set M_{2}.
We present a short plan of proof for Theorem 6.1. The estimate

$$
T_{2}^{\cdot}\left[w, u_{2}, v\right] \leqslant T_{2(2)}^{*} \leqslant T_{2}^{\cdot} \quad\left[w, u \neq 0, v_{2}\right]
$$

is valid in the regions $W_{2}{ }^{\circ}(\max)$ and $W_{2}^{\circ}(\sup)$. The proof of this estimate (for finite controls u) can be carried out in the region $W_{2}^{\circ}(\max) \cap\left[\zeta_{1}>0\right]$ by the implicit function theorem. In the region $W_{2}{ }^{\circ}(\max) \cap\left[\zeta_{1}=0\right]$ the second player's errors lessen $T_{2}(w)$ with an "infinitely great" rate, while the first player's errors translate the position into region $W_{2,0}$.

The proof in the region $W_{2}{ }^{\circ}$ (sup) is complicated; however, it can be carried out even so. It is clear that in the region W_{2}° (sup) the second player can pass to control (5.4) when $y=\mu-\pi / 2-\varepsilon$ (where ε is a small quantity) and can obtain a time as close as desired to $T_{2}(w)$, while the first player cannot lessen even this nonoptimal time. The first player's impulse actions also can only increase the time T_{2} or translate the position into region $W_{0,2}$. In region $W_{0,2}$ the control v_{2} is constructed so that the function $\left.r_{2}(w)=\max \zeta(w, t \Leftarrow 10, \pi)\right)$ cannot be increased along trajectory w_{2} and has a negative initial

Fig. 1 value. In fact, in the lemma it was shown that ζ_{0} does not increase when $\zeta_{0}=\zeta_{1}$ or at the positions where ζ_{0} is a unique maximum point. On the other hand, when $\zeta_{0}=\zeta_{1}$ (or when $\zeta_{0}<\zeta_{1}$) the maximum ζ_{1} is preserved, since the equality $\zeta_{1(2)}=0$ is easily verified. The first player cannot increase the function $r_{2}(w)$ by a finite control or by an impulse and the
position remains in region $W_{0,2}$ the whole time. These arguments together with the continuity of the function ζ_{ζ} (which follows from 4.3) and of function $T_{2}(w)$ yield a sufficient basis for the proof of Theorem 6.1.

We now return to the original problem and to the curves w_{3} generated by the pair $u_{3}=0, v=v_{3}=v_{2}$. Their study introduces the important question of the sign of the derivative $r_{1(3)}$ of the function $r_{1}(w)$ along the curves w_{3} on the set $C_{6}\left[r_{1}=\right.$ $\left.\zeta\left(w, t_{\zeta}\right)\right]$. This question is difficult because the functions r_{1} and t_{ζ} are not specified explicitly. We have succeeded in proving the estimate $r_{1(3)}<0$ in the region

$$
C_{7}\left[C_{6} \cap\left[\left[y_{\beta}=0\right] \cup\left[y_{\alpha}=0\right] \cup\left[t_{\zeta}=\pi / 2 \pm \varepsilon\right]\right]\right]
$$

The notation $t_{\zeta}=\pi / 2 \pm \varepsilon$ was used because control v_{3} is discontinuous for $t_{\zeta}=$ $\pi / 2$, but the estimate $r_{1(3)}^{*}<0$ was established for both limits of $v_{3}(w)$. If the estimate $r_{1(3)} \leqslant 0$ is valid for $w \in C_{6}$, then it can be shown that the equalities

$$
\begin{aligned}
& T_{1}\left(w \in A_{1} \cap C_{3}\right)=t_{\zeta}+\pi / 2, \quad W_{0,1}=\left(A_{2} \cup A_{3}\right) \cap C_{3} \\
& v_{3}=v_{0,1}
\end{aligned}
$$

are valid. However, if the estimate $\dot{r_{1(3)}} \leqslant 0$ is violated, then additional investigation
is required. In this case the pair $u_{1,0}=0, v_{1,0}=v_{3}$ is optimal only in some region which can be constructed by continuing the trajectories w_{3} into the past (coinciding in this case with trajectories w_{2}) up to intersection with the surface $r_{1}(w)=0$.

Figure 1 shows a typical trajectory w_{3}. At the start the position is moved along an ellipse with center at point a and the control ν_{z} has a constant direction up to the switching point p. After the switching at point p motion takes place along an ellipse with center at point b. The lengths of the segments $(a, 0),(0, b)$ equal unity. At the point $p_{1}(\mu-\pi / 2-y=0)$, lying on set M_{3}, the first player turns off the velocity by impulse and the position is moved to "hard" contact during a time $\pi / 2$.

We fix a certain small number $\varepsilon_{1}>0$ and among the trajectories w_{2} we isolate a family $w_{2, \varepsilon, 1}$ by the following test. Along any trajectory $w_{2, \varepsilon, 1}$ of the family indicated, from the estimate $p_{1}\left(\dot{w}_{2, \varepsilon, 1}\right)<0$ follows the estimate $r_{1}\left(w_{2, \varepsilon, 1}\right) \leqslant-\varepsilon_{1}$, while from the estimate $r_{1}\left(w_{2, \varepsilon, 1}\right)>-\varepsilon_{1}$ follows the equality $p_{1}\left(w_{2, \varepsilon, 1}\right)=0$. Suppose that the trajectories $w_{2, \varepsilon, 1}$ occupy a region $W_{\varepsilon, 1}$. We state the final result.

Theorem 6.2. The controls $u_{1}^{\circ}=u_{3}=0$ and $v_{1}^{\circ}=v_{2}$ realize, in the region $W_{\varepsilon, 1} \cap W_{2}^{\circ}$ (max) the time $T_{1}=t_{\zeta}+\pi / 2$ and the second player cannot increase this time. This time cannot be lessened by the first player by any pair u, v_{2} preserving the inclusion $w \in W_{\mathrm{e}, 1} \cap W_{2}{ }^{\circ}$ (max). If the inclusion indicated is not violated until M_{2} is hit, then the motion passes into region C_{1} through the boundary $T_{1}=\pi / 2\left(t_{\zeta}=0\right)$.

REFERENCES

1. Isaacs, R. P. , Differential Games. New York, John Wiley and Sons, Inc., 1965.
2. Krasovskii, $\mathrm{N}_{\mathrm{E}} \mathrm{N}_{\bullet}$, Game Problems on the Contact of Motions, Moscow, "Nauka", 1970.
3. Pozharitskii, G. K., Game problem of the hard contact of two points with an impulse thrust in a linear central field. PMM Vol. 36, N ${ }^{2}$ 6, 1972.
4. Pozharitskii, G. K., Impulse tracking of a point with bounded thrust. PMM Vol. 37 , $\mathrm{N}^{\mathrm{Z}} 2,1973$.

Translated by N. H. C.

UDC 62-50

ON OPTIMUM SELECTION OF NOISE INTERVALS IN DIFFERENTIAL GAMES OF ENCOUNTER

PMM Vol, 39, N2 2, 1975, pp. 207-215

A. A. MELIKIAN
(Moscow)
(Received October 3, 1973)

We examine differential games of encounter in which the minimizing player observes the game's position on a subset Q of the motion interval $\left[t^{\circ}, T\right]$. The subset Q is formed by the second player during the motion, i.e. he switches on a noise eliminating observation. We pose the problem of optimal noise distribution and solve four examples. A general setting of similar problems was given in [1]. Related problems were examined, for example, in [2, 3].

