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We examine a game problem [l, 21 of the “hard” contact of two points (players) 

in a linear position field of attraction to a fixed center, We assume that the first 

(the minimizing) player realizes a control (thrust, force) which is bounded in to- 
tal momentum, while the second (the maximizing) player has available a con- 

trolled thrust which is bounded in absolute value. The game’s value is the time 

up to”hard” contact, i.e. the geometric coincidence of the points for an arbitrary 

relative velocity. This paper abuts [3] in subject matter and is very closely re- 

lated to [4]. In those sections which repeat the material of [4] the proofs are 

given concisely. 

1. Let two points (the first and second players) with masses m,, m2 be attracted to 

a fixed center 0 by forces F~,2 = -02m1,2rl,2, where o2 = con& > 0, while r-1,2 
are the position radius vectors of the points relative 10 center 0. Suppose that the play- 

ers have available arbitrarily-directed control forces (thrusts) f1,2 with the constraint 
1 fz 1 < y = co&, > 0 for the second player, Sy a selection of scales we can obtain 

6? = 1, 1; = m2. Suppose that after this the constraint on fi = m,u - the first play- 
er’s thrust - takes the form of the momentum constraint 

r 

If force f, is finite, then in the variables 

xl = r, - r2, Yl = rl’ - r2’, f, = -m,v 

the motion develops according to the equations 

Xl 
*_ 
- Y1t y; = -51 + u -t v 

p’ = plw = - 1 u 1 , p > 0, 1 v 1 < 1 

In the region x = I x1 1 > 0 , using the notation 

jz = 21 I x, Y, = (Yl’id, Y&l = Yl - yais 

YP = IYPJ 1, ii3 = YPJ / Y~J, iy _I._ L, L l_ ib Yb > 0 

(1.1) 

(1.2) 

in the moving system of unit vectors jcL, ja, j, we obtain, as a consequence of Eqs.(1.2), 
x*= ya, ya’= - 5 + u&z -!- vci + YP2/X 

Yp’ = q3 + vp - Y&3 / 5, p’ = - I u I ’ P > 0, Ida 
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For Yp = 0 the unit vectors 

YP’ 

jp, jy are arbitrary in a plane normal to ia. In this case 

= 1/(up + “py + (u-c + 0 
Constraint (1.1) admits of 

w(l) 1% YE) = YCL + p1, a, 

where the “impulse” control 

the impulse. 

jumps in the position w (z, ya, Yp, p) to the values 

u = ~16 has been used. The vector W(I) is the result of 

The definition of the admissible pairs u (w, II), u (w) and of the trajectories 

w(l) (w (t = O), {u (4 u), u (w)}, t) = W(l) f*$) 

corresponding to them repeats the corresponding definitions in [4]. 

Let us consider two closed sets 

M, LX = 01, M, [CL - n / 2 - 1 y, 1 3 p - n / 2 - y = 01 

in the position space W. Set MI is the set of “hard” contact, while set nf, plays an 

auxiliary role. Denoting by tj (W (a)) = Tj [ u, I_I] the instants at which the positions 

first hit onto set Mj, we ~a11 the pair Uj’, Vj” and the time Tj” = Tj [uj”, Uj”] 

optimal ones when the estimates 

Tj Iu,j”, VI < Tj” < Tj [UT Vj”I 

are satisfied. The control vo,j and the regron W,,j @ Mj are called 

the evasion region if the inclusion z#) (.) E wO,j is preserved for all 

pair U, Vg,j . 

2. E3y analogy with [4] we consider the functions 

the control and 

t > 0 by any 

q(w,p)= p-Vyp2+(p-y~)a --rctgp/x-~/2 
rl (w) = maw7 (w, p < 0) 

where p1 (w) < 0 is the point where the maximum of r1 (w), is realized, pz (w) 
is the smallest zero of the function q (w, p), existing and nonpositive in the region 

C, [rI (w) > 01. In the notation 

2, (w, P) = vx2 + P2, 4 (W PI = l/Y@” + @ - Yc3 

we obtain, in the region w @ Ml U [yp = 01 , the equalities 

Ql.’ = -(P - YE) 1 I, (W, p) - x / 2,s (w, p) 
qp” = -YElpa J h3 (w, P) + 2px I 114 (w, p) 

The form of the second derivative and the equality lim qP’ = + 1 as p -+ - 00 
show that the function q (w, p) can have the only possible stationary maximum in the 

region p -< 0 , which undoubtedly exists in the region w E Ix > 0, Ya > 0, 

QP’ (ZL‘, 0) < 01. The derivative qp’ may have discontinuities when Yp L7 0 . Omit- 
ting the elementary details, we cite the result 

PI(W)== -1/x-2?, wE[Yp=O, o<x~I,~.c-x2+Ya>01 
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Pl (4 = Ya, w E IYp = 01 f-j {lx > 1, ya < 01 f-j [O < x< i 
l/x - x2 + Ya < 01) 

All the regions mentioned satisfy the condition qP’ (W, P * -k 0) < 0. We de- 

note their union by D1. In the remaining part D, _- W \ (M, U DJ of the space 

the function q (w, p) grows monotonically for p < 0 and p1 (w) = 0. 
Acting by the scheme in [4], we can prove the validity of the following statements. 

2.1. The functions F, (w g M,), p1 (W @ M,), pz (w E 15’~ [F1 > 01) are 
continuous, 

2.2. If ‘G is the first instant of realization of the equality lim x (t-t 7 + 0) = 0, 
then lim r1 (w (-, t -+ T)) > 0. 

2.3. Any impulse control from the family 

u (WY P7 m) = m6 NP- ya) ja - y&l / I, (w, p) 

0 < m < min (1, p / I, (w, .p)) 

preserves the value of q (w, p), i.e. 

*q = qr (w”), p) - q (w, p) = 0 

while any impulse control not occurring in this family realizes the bound 4q < 0. 
2.4. In the region w E c, the family of impulse controls 

mulo (w) = m6 [(p, - y,) jcl - ypjpl / 1, (w, p2), 0,< m< 1 

realizes the equality Apz = p2 (w(l)) - pz (w) = 0, while any control u = ylb; 
not occurring in this family either strictly increases the root pz (Apz > 0) or trans- 

lates the position into the region w(l) E c, E @’ \ (C, U M,). 

The derivative T,’ of the function (for finite u) 

has the form 
T1 (w) = arc tg p2 I x + n/2 

T,’ = (qp’ (w, PZ) 4’)-l 14 + R, + RJ, w E C, fl [Z2 > 01 

RI = a,Z12 I I, - pzZ, 

R, = xZ,-’ (I u I 4 - qua + ypp), R, = xl,-l [-a,v, +yppl 

T,’ = -I u I + .s (~a + G) + ((1 - s2) [(u,? + q# + (uY + zQ21)l’z 

wEC1r)[Z2=01, s=x/(x++yl*; 

Z, = r/x” + ~22, I2 = I2 (24 p2), al = 65 - Ya 

These formulas show [4] that the pair 

UIDl Ul o zzz -_u lo / I u10 Iv w E c, f-) 11, > 01 

u10 = -v, vlo = sja + fl - s'jp, w E c, n [Z, = 01 

realizes the estimates 

1’; (UT, ?Q”, v) =G T,’ (w, TV=‘, ~13 < T,’ (w, u, ~1~) (2.1) 

The first estimate is verified elementarily. Let us demonstrate the validity of the second 
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one, In fact, according to statement 2.4,any impulse control IL = PLb, preserving 

the inclusion w(r) E C, and not equal to We”, strictly increases pz and, consequently, 

I’,. It is not difficulat to verify that the control mul“ preserves the first summand 

~~11~ / 12 of sum Hi and converts the second summand to the quantity - pz (w) (1 - m) x 

h (m,P?).If pz (w) < 0, the control UIO realizes the minimum of sum R,. Ifpz (w) = 0, 

it can be shown that for any u # ulU the estimate - pdz > 0 is realized at the next 

instant. 

To discuss what is possible to the first player on the boundary r-i = 0 of region C, 

we consider the derivative ri’ of the function r, (w) 

If the second player’s control in the region D, n C, is specified by the formulas 

c’ 1 = -[(k - k) L - yf3q31 / I, (w, pl) 

w E 4 n [4 (w, PJ > 01 
G’1 c= .sju + 1/l - s”jp, w E D, fl [4 (4 pJ = 01 

and in the region D, f-l C, it is continued uninterruptedly so that it passes continuously 
into the control ut, ui” on the common boundary of the regions (DI 3 C,) and 

(D, ,/l C,), as well as on the boundary of the regions (D, 0 C,) and (D, n C,), 
then the control Y’ -= Y,(O), w E c,, d = ul, w E C, is continuous for w E Mt. 

In addition, from the form of the derivative rl’ and from statement 2.3 it follows 

that any errors of the first player on a part of the boundary D, n ir, = OJ translate 

the position into region C,. His errors on a part of the boundary D, f-l [rl = 01 lead 

to the same result. In fact, according to 2.3 any impulse control not parallel to the opti- 

mal one lessens q (w, 0) - I”~ (w). Any finite control u which converts the derivative 

T,’ into a positive quantity also translates the position into region C:,. 

2.5, In the region w E C, the control u1 in pair with any control u effects a con- 

tact no earlier than the instant t = n / 2. 

Proof. Let z (. , T) = o ; then we can find t, < T such that .Z (. ? t E [t,, 

2)) < 1. From the equality Q~‘(u, U) = ( y, / y )-( i / x ) follow the estimate qp’ (IO (-, 
t ~3 I~I, ‘T)), 0) < 0 and the inclusion W (. . t E It,, 7)) E D,. By the construction of 

control 9 the function r1 (1O) does not grow for w E D, n CZ . This means that w (. , 

t E It,, z)) E U, n Ct. In fact, from the contrary premise LO (. , t2 E [tl, 7)) E D, r\ CZ 
and from the nonincrease of r1 follows the estimate p1 (W (0, t E [TV, a))) :< rl (w (- , 

h)) < 0. This contradicts statement 2.2. From the inclusion w (a, tl) CC D, n Cl follows 

the existence of t, , namely, the first root of the equation r1 (w (. , t3)) = 0, and the 
function r1 does not decrease along the trajectory when t == t, .It is obvious that this 
is possible only for 

p.L (LU (. , t3)) = 0, 1'1 b (* 7 h)) > 0 

i.e. w (. , t3) E IT, (IP) =: x / 21 = M.~, Q. E. D. 
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The arguments presented above allow t+s to formulate a result. 
Theorem 1. When w (0) E C, [rl > 01 the controls ulo, u,” realize the op- 

timal time T,” (w) = arc tg p2 / 2 + x / 2. 
Proof. Statement 2.1 establishes the continuity of function T,’ (w). Statement 

2.4 shows that the first player cannot lessen the function T,” (w) by an impulse. Esti- 

mate (2.1) establishes a saddle point for the derivative when w E c,, while statement 

2.5 together with the estimate T ’ r (wj < n i 2 shows that the first piayer cannot ies- 

sen the time to contact by leaving region c1 . 

Note. The control v2,0 = ~1 realizes an escape from set M, in the region 

cs n f p - n / 2 < O] . In fact, the difference lo - n / 2 does not increase ; there- 
fore, the equation q (w ( - , t), p) = 0 cannot have at zero the value p = 0 along 

any admissible trajectory corresponding to the pair U, ul. 

3. In region C, the problem of constructing the minimax time becomes the prob- 
lem of constructing the minimax time for the position to hit onto the set AT, [q (w, 

0) +== p - n / 2 - y = 0] in the presence of the phase constraint w( . , t) E C, (a 

constraint on the second player’s actions). let us reject the phase constraint for the pre- 

sent. intuitiveiy we feei also that the minimax is achieved for u = 0. Therefore, in the 

set C,[l~-7rl2-y < 0] we seek the “slow-action” of T, on set &l, and the 

control t+, corresponding to it. 
Within the framework of the “auxiliary” problem we form in the fixed system (xi, pi) 

two three-dimensional vectors g, = aT2 / ax, and g, = dT, / dy, and, after the 

operation max,, obtain the “fundamental equation” [l] 

(g&i) - (&A) + I g, I + 1 = 0 
with the “termination conditions” [ 11 

RX@ zz 0, g p = Ay, / y, a > 0 w E M, = fJ!f, n ly ) 0, 

--y f Xl!; > 01 

The termination conditions show that the equalities 

uz = yll y, T,,<nl% 
u2 = -Y, 1 Y, n>T2>42, 

Yl 1 Y E M3 

are valid along the “characteristics” g,’ = g,, g,’ = -g, , i.e. control ~a pre- 

serves along the characteristics a constant value of y, / y equal to its value on set 

M, for T, < n / 2, and changes this value to a contrary one for T, > n / 2. It is 
clear that the optimal trajectories of the auxiliary problem remain in the plane contain- 

ing the vectors xi, y,. 
We choose a fixed system of axes coinciding with the moving trihedron jcl, ja, ju, 

typical for some position w E Ca, and we denote the components along these fixed 

axes by subscripts x1, it ~1, i, ~2, i 6 (’ = 1, 2, 3). The discussions preceding show that 
V2, a = 0. To determine T, < n / 2, us we use the functions 

Yl, 1 = - (x - u2, 1) a + Yak Yl. 2 = u2, 2a + ypb (3.1) 

a = sin t, b = cos t 

The condition v2 = y1 (T,) / 1 y (TJ 1 allows usto seek 7’s < n / 2 as the smal- 
lest positive root of the equation 



190 S.K.F'ozharitskii 

To determine T, > 3t: / 2 the same reasonings allow us to obtain the equation 

*fl (w, t> .= p - Jr / 2 - 2 $- a - A (w, t) '..Z 0 

4, Let us establish a number of important properties of the function 

4.1. The function L$ (w, t E f--zct rt]) has no more than two isolated maxima 

with respect to variable t, 

Proof. For w e {is = o] u [YE = ij] [J [ua = O]] statement 4.1 can be verified 

by calculation, At the remaining positions the function A (IU, t e [-n, n]) does not 

have zeros and the points tt,a = 7 n / 2 are not stationary points for the functionE(u~,t). 

We introduce the notation 

ag / at = E’ (w, t y _t n / 2) = -. b - b2m1A- 

InI = m* (ro, t) = 111” (ih z = tg t) c- (--.rz t y,) (-4 - Y&Z) i- Y&Q 

771 (74 t) =r ns (70, z) = (- 52 -+- y3)2 + EIp2 - m2 (76 4 

A stationary point of function g is a zero of the function n,. On the other hand, a zero 
t,j E [-a / 2, x / 21 of function n, is a zero of the function E’ for nl < 0, or (for (ml > 

0) either the point tj -I- n < n or the point ti - n > -R is a zero of function E’ 

From the periodicity conditions and from the equalities E ( w, -n) == 5 (w, 0) = g (lo, n) 
it follows that the function E’ has an even number of zeros, i.e. k >, 2, while the func- 

tlon nr - a polynomial in z of degree no higher than the fourth - has no more than 
four zeros on the interval t E (---n i 2, n i 2). This means that k == 2, 4. 

4.2. The function g (W, t} admits of no more than one maximum on the interval 

[U, n). 
The case when E; (u, t) has a maximum at t = 0, is investigated simply. It is not 

difficult also to show that the maxima and minima are isolated at the remaining posi- 

tions, An accumulation of all the isolated points on the interval [0, n] is impossible 

because of the equality E (in’, -n) = 5 (M, 0). It reamins to consider the possibility that 

two maxima k”, 
. . 

&“, separated by a mInImum &a, lie on the interval [O, n], while the 

minimum t,,o E (-n, 0). Since there are no other isolated points, the function 5 (ut, t) 
increases for 1 E [0, ho]. A contradiction follows from the estimate 

E (WY tz”) > E (w, 0) > E, (w, tz” - n) = E (u), tzO) + 2a (tz”) 

The function 5 (w, t) is defined for t E 10, ~1. We say that ; (w, t) has a “ma- 

ximum at t = 0 ” if the function E (ZU, t E i---n, n]) has such a maximum at 
t = 0 , We note that the function 5 has unisolated maxima at the sole position w [X = 

1, y=OI. They are isolated at the remaining positions. In accordance to what has 
been presented, the function 5 (w, t E 10, ~1) admits of no more than two maximum 
points pi < ta E [O, n) with the values cl and c2 of the function 5. By CIM we de- 
note the region where even one of the maxima exists, and we set & = 5, when it is 
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unique and c3 = max [ 51, 521 when there are two maxima. 
4.3. The equality c1 = 5, and the bound I& > 5s if a second maximum exists, 

are valid in the region CM n I c3 > 5 (w, 0) E c,,] . 
Proof. Let ?& = 5 (w, rs E [0, rc / 2]), then a3 is a maximum point of function E. 

Statement 4.3 is verified simply when w E 1s = 1, y = O] . At the remaining positions 

r3 is an isolated point. In addition, according to 4.2, the estimate 

53 > r; (w, 1 E [O, n), t # t3) > 5 (1L’, 2.E kc / 2, 4) = E (Lo, t E (n / 29 n)) - 2 + 2a 

is valid. Let r3 E (n / 2, n). From the estimate 

E (w, 1 E (n / 2, n)) > 5 (u), t) = E (w, t) - 2 + 2a 

it follows that function E has a maximum for t E (n / 2, n) and, therefore, function 5 

has only one maximum & = L3. 

Let us consider the region 
of :lgion C 

Cd [[s = p - JI / 2, - y < 0] , namely, the closure 
For w E A [C r) [ 1;, > 0]] h 

tc of functi& 5. In the regtion ‘Al’ 
t ere exists a first nonnegative zero 

]A, n L4,rA ( w, tc) > O]] the necessary 
conditions in section 5 lead to the control 

u2 - A& ](-xQ + Y,&) ja -t y&&] (5. I) 

ac = sin tc, bc = cos tc, hc = 
1 

1, t:EwGl 
- 1, tr.E(w&Jq 

A simple investigation shows that tc can be the first zero of function j and that the func- 

tion A (w, t) vanishes only when 5 (w, tc) = 5,. Furthermore, the estimate a (W) = 

Z i (x’ + Ya”) < 1 is valid at these positions. However, in the region 11 r” lL 1 1 n [ cl= 
A, = 011 the necessary conditions do not yield a univalent control v2 but yield only 
inequalities. Any control 1 u 1 = 1, satisfying these inequalities, is acceptable by the 

necessary conditions. For example, we can set 

us = h@ja + Jfl - ?jp (5.2) 

In the region -4s [Cd ri .[Z& < 0, 51 > &II we continue the control by formulas 
(5.1). (5.2), by setting ti: = ri. As we shall see from what follows, there are sufficient 

grounds for such a choice. In the region rl a ]C, \ (A r n n s)] we seek to increase y 

and, therefore, we set 
u2 = (Y& + Ypjp) 1 y, U&O ]y>o] (5.3) 

7~s = X1/ I, 1(? E A, f-j [y = 0, X > o] 

c, = const,, I 1’2 I = 17 w~A,f-‘[y=s=Ol 

We introduce into consideration the trajectories zus generated by the pair us = 0, 

u, and denote by &2, the derivative of the function &, = 5 (w, 0) along trajecto- 
ries w,. We introduce also the set 

M, [co = 0 n ]t5’ ( w, 0) =z -1 + xys / y < 0, y > 01 (J [y = 0111 

which is the “reverse side” of set M,, i. e. that part of it which the second player can 
always evade for u = us = 0. We note that a trajectory ws can realize a “slow-action” 
onto lpf2 from region C, if it does not intersect set M4 until the set Ms\itf, z Ms. 
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has been hit. Unfortunately, not all trajectories w, possess this property and among them 
there exist those which from the region c, fall inside the region C5 [ j, -/ d] through 

the boundary of fir,, and again go into region c, arriving at Ma by the instant t _: 
t; (w (0)). From the subsequent analysis it becomes clear in what sense we can proceed 

to talk about the trajectories w, in region c, wherein v2 is not defined. 
Lemma. Trajectories w2 can intersect set Mb from the side of region C, only on 

the set 
MS [Jl, n [I d y < 2, y, 6 0, 51 i 0, t; > 2-c i 211 

Proof. Let w c Md [M4n lC1 > 0, 0 < t; < n / 211. From the equation 6 (ZD, 0) = 
5 (w, tr) we find that + is the first zero of the function h, (IU, t)l= y - a - A. From 

the equation (y - u)~ - A2 = 0 it follows that + is a zero of the function 

J”2 (u,. t) :L ($ - 52 -i- 1) a + 2X&b - 2.Y 

It is not difficult to show that tV is its first zero. From the estimate 0 < tr < n / 2 fol- 

lows the estimate --I + ZY, / IJ = A,’ (u?, 0) < 0. This means that tc satisfies the esti- 
mate hz’ (w, fC) = (y2 - x2 -t 1)~~ - 2xyzb; > 0 

We now note that by the construction of control vz not one of the trajectories ~UZ can 

make the function At vanish more than once, and for AC = O-+ ~2 E C,. We can easily 

convince ourselves by looking over the possibilities. From the estimate A: > 0 and the 
equation AC = Y - ac follows the equality 

&, up (xy; - 64 /I y (y - a;) 

It is not difficult to verify that the estimate &2, >, 0 is consistent with the estimate 

h2’ (w, tr) > 0 and with the equality x1 == o only on the set 

n/l; [M,; 19, ]Ui == (Y’ - ,S -I- 1) i IJ, 0; = XY, / ~11 

For w E M7 the trajectory 1~2 lies wholly in Mi, while 3 “arrives” at ,M? from the 

region L’, [ &, .( u]. We shall talk about the trajectories II)? in region C, in the sense 
of a continuation into the “past” by a time r -2 -z of the trajectories of set M, with 

a switching of control VL to the opposite one at r :;- -x I 2. 

On the set Mx [AI, rl [cl > 0, tc > n i 2]J we have the equalities and estimates 

& f y - 2 T_ n; --. A i = 0 

I,’ = (acAL)-’ (4 (y -- i)bL - xylac - aibr (y - 2)) 

5,(,, =I (Q” + rya (Y -- 2)) (Y' (Y - 2 -t a$-' 

Tc > nl2 ==> <(IL>, al 2)< 0 S+ 5 > y - 1 

Assuming to the contrary that I&_,~) > 0, we obtain the estimate 

hl<hBG?/--2 + at - [ (,/ - I)” a, ,_2 + @bit + 2uybyzy / y -- II]‘,: 

In the region MS n [y > 21 we can easily verify the estimate A, < 0. The contradiction 
with the equation h, = 0 leads to the estimate 

&, (w CE M. I1 ]u >, 21) < 0 

In the region Ma r‘l [cl = OJ the equality a ,’ = 0 implies, as a consequence.the relation 
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5&j (W E Ma fl i 5% =: 011 = 4 ty - I)b&_ / aL < 0 

In the region Mat n 1~ < i1 the function A, has no zeros. 
At the remaining positions of the set M, \ M, it is clear by the construction of uz 

that &,, < 0. An exception is the set M, () [x = 1, 9 = ir] , i.e. the “fixed points” 

which the trajectories wz cannot hit from the side of region Cs. We note that in the 

proof we used the equation 50 = 5 (w, ti) and did not use the equation co = 0. This 

means that the trajectory wz E AZ can once again pass into As from the boundary 
160 = t1 <.U, tC > Uj of regions A2 and A3 only for tc = 0. Sliding states are impos- 

sible on this boundary whereon cz is discontinuous. 
Let us fix Y on set M, and increase x from the value I~ = Y - 1. The function 

5’ 0~~) will change from the value (&,Jt== 5rYa (2 - Y) > 0. With the change in I 
the function c1 (the maximum) necessarily changes sign at x = zs, According to the 

lemma the estimate &,, < 0 is valid for 2 = xs , This means that the equation 

GM (% Yz, Y) = 0. is valid for some 23 = x3 (zJ~, y) . 

For x = x3 it is not difficult to determine the equality and the estimate 

d&a, / 83 = 5’ (w, tc) -l C (w) 

c (w) = 4 (y - 1) A, - y2a$ (y2q I (2 - Y) + Ya) < 0 

which establish the uniqueness and continuity of the curve z = 2s (Ya, Y) separating 

the regions NX [M, n [ i$, (zt < 011 and Nz [M4 n 1 &Q > 011 for any value l- Y <2. 
In region N, we form a new control u2 and instead of a realization by formula (5.1) we 

set 
vs (w E NJ = v2, a ja -i- r/l -'v~,crj~ (5.4) 

%, a = ZY, i ys + @*Y&a i Y4 - y&a” (1 + x2> I Y” + l)‘iz 

This control maximizes the derivative tr’ (w, u2, u) on the set of controls u preserv- 

ing (5,’ (WV u2, v) = 0) the value 5,. In the region c’, also we form the control 
us (w) by the formulas 

u3 (4 = u2 (4, 2i.J E c, n h-1 (w) < 511 = Fl (5.5) 

At those positions where r1 (UP) > &, OF where T& does not exist, we set 

8, The control us realizes the time T, (w) = tc (w) for all trajectories wsarriv- 
ing at M, from region Cs and by-passing set Nt. Trajectories w,, hitting onto 11’1, 

arrive at Ms by the instant T2 (w) = tl (w) + t, (w) + 3t / 2. lIere t, (w) is the 
time of motion up to set N 2, t2 (w) is the time of sliding on set iv1 from which the 

trajectory leaves for Y - 1 - x = 0, g, < 0, i.e. at the instant the equality 
tr (w) = z I 2. is realized, We can show that the trajectory does not intersect the 
curve Lc = za. 

The region occupied by trajectories of the first type is denoted by ws” (max) ; tra- 
jectories of the second type occupy the region TV,’ (sup). The rest of the trajectories 
W, starting in C, occupy the region Wotz. 

Theorem 6.1. The equality T,” [u,” = 0, us” = ~21 I- Ts” = Tz (W) 
realizes in region WzQ (max) . In region W,O (sup) there exists a sequence ofcontrols 
%,j such that 
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T, [u, vz,J < T, [uzo == 0, vn,J -+ T, (w) as V?,j --t 722 

In the region WO,a the control v2 = uo,2 causes the trajectory to evade set i’kf, s 
We present a short plan of proof for Theorem 6.1. The estimate 

Ts’ [w, us, VI < T;,,, < T,’ h, u # 0, vJ 

is valid in the regions w,” (max) and wa” (sup) . The proof of this estimate (for 

finite controls U) can be carried out in the region Wa” (max) n [ 5, > O] by the im- 

plicit function theorem. In the region IV,’ (max) n [cl = 01 the second player’s 

errors lessen T, (w) with an “infinitely great” rate, while the first player’s errors trans- 

late the position into region ws+ 

The proof in the region wa” (sup) is complicated ; however, it can be carried out 

even so, It is clear that in the region k%‘,’ (sup) the second player can pass to con- 

trol (5.4) when y = p - n / 2 - F. (where E is a small quantity) and can obtain a 

time as close as desired to Ta (w), while the first player cannot lessen even this non- 
optimal time. The first player’s impulse actions also can only increase the time T, or 

translate the position into region Wa,a. In region W,,,a the control us is constructed 
so that the function r2 (w) = max 5 (w, t E 10, x)) cannot be increased along 

trajectory ws and has a negative initial 

value. In fact, in the lemma it was 
shown that &, does not increase when 

c,, = & or at the positions where c,, 

Pl 
is a unique maximum point. On the 

other hand, when 5, = j, (or when 

5s < 51) the maximum P& is pre- 
served, since the equality c;,,, = 0 

is easily verified. The first player can- 

Fig. 1 not increase the function r, (w) by a 

finite control or by an impulse and the 

position remains in region WO,a the whole time. These arguments together with the 
continuity of the function tc (which follows from 4.3) and of function T, (w) yield a 
sufficient basis for the proof of Theorem 6.1. 

We now return to the original problem and to the curvesrc~a generated by the pair 
us = 0, v = us = vs. Their study introduces the important question of the sign of 

the derivative r;(a) of the function ri (w) along the curves ws on the set cs [rr = 

5 (w, &-)I. This question is difficult because the functions rl and tc are not specified 
explicitly. We have succeeded in proving the estimate r& < 0 in the region 

C,ICs n I[yp = 01 [J [y, = 01 u [tc = n / 2 t dl 

The notation tC = sr / 2 f E was used because control us is discontinuous for t; = 
n / 2, but the estimate r;.;(s) < 0 was established for both limits of vg (w). If the esti- 
mate ri(a) < 0 is valid for w E C,, then it can be shown that the equalities 

T, (W E Al n c3> = tr -t n / 2, wo,l = (A2 u &) n c3 

773 = VO,l 

. 
are valid. However, if the estimate r1c3) < 0 is violated, then additional investigation 
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is required. In this case the pair ul,o = 0, v 1,o = Us is optimal only in some region 

which can be constructed by continuing the trajectories ru, into the past (coinciding in 

this case with trajectories ws) up to intersection with the surface rr (w) = 0. 

Figure 1 shows a typical trajectory ws . At the start the position is moved along an 

ellipse with center at point a and the control 9 has a constant direction up to the swit- 

ching point p After the switching at point P motion takes place along an ellipse with 

center at point b. The lengths of the segments (a, 0), (0, b) equal unity, At the point 

p1 (P - n/2 - Y = 0), lying on set M 3, the first player turns off the velocity by im- 

pulse and the position is moved to “hard” contact during a time x / 2 . 
We fix a certain small number er > 0 and among the trajectories wa we isolate a 

family WZ,~,~ by the following test. Along any trajectory ~a,~,~ of the family indi- 

cated, from the estimate pi (w & < 0 follows the estimate r1 (w~,~,I) < -&I, 
while from the estimate r1 (w?,& > -er follows the equality pi (wZ,+i) = 0. Sup- 
pose that the trajectories ~~,~,r occupy a region WE,i. We state the final result. 

Theorem 6. 2. The controls uiO = us = (J and v,’ = vZ realize,in the re- 

gion lY,,in W,’ (max) the time T, = tc + rc / 2 and the second player cannot in- 

crease this time. This time cannot be lessened by the first player by any pair u, v., 
preserving the inclusion w E Wr,i n W,’ (max). If the inclusion indicated is not vio- 

lated until MP is hit, then the motion passes into region C, through the boundary 
T, = x / 2 (tc = 0). 
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We examine differential games of encounter in which the minimizing player 

observes the game’s position on a subset Q of the motion interval [to, Tl. The 
subset Q is formed by the second player during the motion, i.e. he switches on 
a noise eliminating observation. We pose the problem of optimal noise distribu- 

tion and solve four examples. A general setting of similar problems was given 
in [l]. Related problems were examined, for example, in [2, 31. 


